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Abstract We consider the mean-field themy of the m d o m  field Ising model obtained by 
Wighing &e many solutions of the mean-held equations with Boltzmann-like f&". TheSe 
solutions are foundnumerically in three dimensions and we observe mitical behaviour arising 
from the weighted sum. We estimate the exponents. 

, .  1. Introduction 

Despite progress since the early 1980's. when it was realized that perturbative techniques 
fail to capture its critical behaviour, the random field Ising model (RFIM) [I] is still in need 
of further illumination. The cause of the difficulty in dealing with this type of disorder is 
that the energy landscape is complicated, with many local minima that pertubation theory 
fails to take account of. Mean-field theory provides a simple insight into the difficulty: at 
sufficiently low temperature the mean-field equations have many solutions. The intuitively 
obvious way of defining mean-field theory would be to weigh these solutions adcording 
to their Boltzmann factors. This weighted mean-field theory, or to be precise, the theory 
with the weights e-BF which include an entropy factor, is the subject of this paper. In 
this context the failure of the pertubative approach comes about because. as is clear in 
the supersymmebic formularion [Z], the prescription for the weights does not contain a 
Boltzmann factor. 

In this report we solve the Iiiean-field equations numerically and directly construct the 
weighted mean-field theory. Our main interest is to see how critical behaviour can arise at 
the ferromagnetic knsition. Guagnelli eral [3]  have analysed a truncation of the theory by 
only considering the maximal solutions: those with maximum or minimum magnetization. 
They found that critical behaviour does not arise in that case. Here we shall enlarge on their 
work by considering a much larger number of solutions and shall see how divergences in 
thermodynamic quantities can arise. The number of solutions included in the suni is clearly 
important in this approach and we shall discuss the issue in detail. 

Replica theory is the natural setting for dealing with the difficulty mentioned above and 
although not yet successful in treating the critical behaviour, it is helpful to keep the resulting 
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scenario [4] in mind. The replica-symmetric solution becomes unstable as one reduces the 
temperature below TRSB, at which point the correlation length remains finite [5]. The critical 
temperature TC at which ferromagnetic order arises is at a lower temperature TC < TRSB. 
Finally, one expects replica symmetry to be restored at an even lower temperature. This 
scenario has clear analogues in our mean-field treatment. 

We start in sections 2 and 3 by discussing the consequences of weighted mean-field 
theory and describing the technique of numerically searching for solutions. Section 4 is 
concerned with the general properties and number of solutions we find. Analysis of the 
correlation functions and the emergence of critical behaviour is the subject of section 5. 
Fmally we present a short conclusion discussing the numerical values of the exponents we 
determine. 

2. The RFIM and its weighted mean-field theory 

The system consists of Ising spins subject to quenched random fields hi; 

The effect of the fields is to destroy the tendency to long-range order, and the original 
argument of lmry and Ma [6] based on the energy balance for domain formation gives the 
lower critical dimension as drcd = 2. Perhubative methods, which lead to 'the phenomenon of 
dimensional reduction [2,71, would instead predict dIcd = 3. However, in three dimensions 
it has been shown rigorously that long-range order prevails at low enough temperature [SI. 
This case is most interesting and we shall restrict ourselves to studying the system in three 
dimensions. 

In the work described here the fields are taken to be f lhl  with equal probability. 
According to arguments of M o n y  [91, and consistent with the zero-temperature 
simulations of Ogielski [IO], a bimodal probability distribution of this sort causes the phase 
transition to be first order when Ihl is very large. As in [3] we work with Ihl = 1.5, which is 
small enough to give a continuous transition, yet large enough to shift Tc substantially from 
its value without disorder, thus revealing a range of non-hivial critical behaviour before the 
crossover to pure behaviour at higher temperature. 

For a given realization of the random fields, the mean-field equations for the system are 

mi = tanh (B(Dm; +hi)) (2.2) 

where mi is the local magnetization and Dm; indicates a sum of the magnetizations over 
the nearest neighbours to site i. As has already been indicated, at low temperature there can 
be many solutions to this equation. We shall denote the solutions by my, and, in general, 
shall use the superscript CY to denote a quantity, such as the free energy Fe, calculated for 
that solution, 

where the energy Em,  and entropy S', of the solution are given by the expressions 
1 E' = -- v . 2 '  

LmuDmy + himy 
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A convenient way of organizing the weighted mean-field theory is in terms of a mean- 
field partition function defined as 

This way of writing the theory simply encodes the intuitive definitions of quantities, such 
as the energy, as Boltzmann weighted sums over the solutions 

where we have defined the weights: w" = e-aP/ZuF. Note that aFQ"/ag is simple only 
because of the constraints aF'/amq = 0, which are nothing other than the mean-field 
equations (2.2). 

The average over the random fields is performed as the last step and is denoted by an 
overbar, for example m. 

Critical behaviour becomes apparent through study .of the correlation functions. In 
the rum the correlators {SiSj) and (S;)(Sj)  are both more singular in momentum space 
than the connected correlator (SiS,)c = (SiSj) - ( S i ) ( S j ) .  Although different from the 
field theory usage, it seems common in random field systems to call the correlator (Si)(Sj)  
'disconnected' and we shall follow this convention. In section 5 we shall determine the 
exponents i j  and q associated with the disconnected and connected correlators. 

Contrary to ordinary mean-field theory, the probability distribution implied by ZUF is 
not factorized. The fluctuation dissipation theorem (FDT) is therefore not needed to calculate 
the correlation functions. .Using ZYF we find 

where g$ is defined & amy/ahi and is the usual term arising from the FDT. 

3. Solving the mean-field equations 

3.1. Iteration technique 

Starting from some seed configuration mjo), the mean-field equations (2.2) are solved by 
iteration [ 1 I]: 

m y '  t tanh(B(0m:) + h i ) ) .  (3.1) 
This is implemented as an efficient code running on the APE parallel rocessor. We insist on 
strict convergence requirements, that for each solution Cboard(my'R - m f ) ) z  < 2 x 
Where the mi's are represented to float accuracy and there are 128 APE boards to cover the 
complete 323 lattice. With this requirement we find no difficulty in distinguishing solutions. 
The criterion for saying that two solutions are the same, that the maximal site difference 
[my - mr 1, be less than some cut-off, leads to the same identification of solutions for a 
wide range of cut-off values. We have finally chosen this cut-off to be lo-). Although 
the majority of seeds converge quickly, for some temperatures and some realizations of 
 the random field we found that the convergence time was unacceptably large. A maximum 
number of 15000 iteration steps has been imposed, leading to rejection of about 1.4% of the 
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potential solutions. We have observed a phenomenon known as ‘funnelling’ in which the 
configurations arising from different seeds rapidly converge to very similar configurations 
which then follow the same path though configuration space before finally converging [12]. 
The iteration technique may lead to solutions that are maxima of the free energy besides 
minima. Although we do not see such solutions in the cases described below, we have no 
simple way of rejecting them and they are implicitly included in the weighted sum. 

3.2. Maximal solutions 

The iteration (3.1) has the property that if one can assign an ordering to two configurations 
m, and mb: m2)i 2 mt)? for all sites i; then this ordering is preserved: m::’) 2 mf:’). 
Consequently, one can identify two special, maximal solutions, mi. and m-, that arise 
from the seeds, mz) = 1 and m!!! = -1, and that bound any other solution since 
m!; 2 m& 

The existence of maximal solutions provides an accurate means of searching for the 
temperature (which by analogy with the replica analysis, we denote as TRSB) at which the 
mean-field equations start to have more than one solution. Below this temperature mi. and 
m- differ. We have found TRSB for series of random fields both on 3Z3 and 643 lattices. 
At the larger size the peak of the distribution of TRSB’S moves to higher temperature while 
the width shrinks-supporting the results from Ieplica theory that TRSB is well defined and 
separated from TC in the thermodynamic l i t .  In about 10 % of the cases we examined we 
observed two or more values of TRSB. That is, at high temperature there is a unique solution, 
then as the temperature is reduced we first find more than one solution, then an interval 
where again only one solution exists, before finally reaching another low-temperature region 
with many solutions. This effect is reminiscent of some of the observations of jumping made 
by Sourlas at zero temperature [131. 

3.3. Seed strategies 

We have considered several strategies for the choice of seeds. The most efficient strategy 
we found was to consider chequerboard seeds: we divide the 323 cube up into 8 subcubes 
of size 16’, and colour each one independently with +1 or -1. The leads to 256 seeds 
including the maximal ones. Further subdivision was thought to be impractical, so further 
sets of 256 seeds were generated by adding independent random pertubations to each site 
of the chequer seeds. 

mg. These were the solutions analysed in [3]. 

4. Number and properties of salutians 

The number of solutions found and included in the weighted mean-field theory is an 
important parameter. We start this section by displaying the average number and the 
effective number of solutions we find in our work. The main justification however, for 
curtailing the search for further solutions at the point we choose, is that the quantities 
measured from the correlators show very little change on increasing the number of solutions 
beyond those found with chequerboard seeds alone. 

The results we shall present are based on data for the 32) periodic lattice for a set of 
150 different magnetic field samples. We have calculated quantities based on the maximal 
solutions alone, and the solutions obtained from chequerboard seeds. Besides these, in the 
temperature region identified as most interesting, we have performed longer runs including 
chequerboard followed by two sets of chequerboard plus random seeds for the first 100 of 
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the magnetic field samples. The temperature ranges covered by each of these-three data 
sets are most clearly seen by looking ahead to the ranges of the three curves of figure 2. 

In all cases the temperature is measured in units of the mean-field critical temperature 
for the pure model TjTcpure = Tj6 .  

Quantities such as the energy, eneopy and &e energy vary smoothly with temperature 
and the curves show little variation when the number of solutions included is increased. The 
average squared site magnetization is also a smooth function, but the average magnetization 
itself suffers large fluctuations. The specific heat starts to develop a cusp at the temperatures 
we shall later identify as the ferromagnetic phase mnsition. 

4.1. Number of solutwns 

The number of distinct solutions found by iteration is shown in figure 1. Those solutions with 
completely negligible weight (F' -&in > 80) have been dropped. The three sets of points 
are from successively increasing numbers of iteration trials. The lowest set (squares) is for 
the 256 chequerboard seeds while the upper two sets (hiangles) correspond, respectively, 
to the addition of one and two sets of random pertubations on top of the chequerboard. 

Already from this figure it is clear that there is a law of diminishing returns relating 
the number of solutions found to the number of seeds iterated. From more detailed studies 
at a fixed low temperature, we see that after a steep initial rise, the number of solutions 
only increases slowly with the amount of effort. We have determined to stop searching for 
solutions at the point determined by the shoulder of this curve, which in practice is after 
thechequerboard and two sets of chequerboard plus random seeds. At higher temperatures 
a less thorough search is sufficient. 

0 " ' ~ ~ " ' ~ " ~ " ~ ~ ' ~ ~ ~ ~ ~ ~ '  
0.7 0.75 0.8 0 .e 0.8 

Temperature 

Figure 1. Total number of solutions found. Squares for chequerboard seeds alone, triangles for 
chequerboard followed by one set of random permbations added to chequerboard, open triangles 
for chequerboard followed by two such sets of random pertubations. 
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Figure 2. W 2  = ~ ( w ~ ) ~ .  the inverse of the effective number of solutions. C i l e s  are for 
maximal solutions alone. squares for chequerboard, and triangles for chequerboard followed by 
(WO sets 00 additional penubations. 

A feeling for the degree to which extra solutions are important comes from taking 
account of their weights, and a convenient quantity is W2 defined by 

The inverse gives the effective number of solutions that contribute. A plot of W 2  is shown 
in figure 2 for maximal, chequerboard and chequerboard plus random seeds. At high 
temperatures W 2  = 1 since only one solution exists, whereas the rise at low temperatures is 
due to the increasing dominance of certain solutions. This increasing dominance can also be 
seen in the density of solutions in free energy which rises less steeply at lower temperatures. 
The fact that the effective number of solutions grows more slowly than the total number of 
solutions gives us our confidence that we are finding all the important solutions. 

A histogram of the overlaps between different solutions displays a peak at small overlap 
with a long tail. When the histogram is normalized by the product of the weights of the 
solutions the peak moves to smaller overlap. 

4.2. Form of solutions 

There is a regime of temperature where it is possible to get some intuition into the form 
of the solutions. Generally the solutions are complicated at high temperature mi is small 
but follows the field mi = phi + p2Dhi, whereas at low temperatures there is an overall 
magnetization and sometimes reversed field domains. However, in the region just below 
TRSB (A?' * 0.01) where there are only a small number of solutions, it is possible to see 
that the differences between solutions are local. In figure 3 a three-dimensional picture 
of the difference in magnetization between the maximal solutions (bear in mind that these 
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Figure 3. 
isasurtaces of difference m+i - m - ,  = 0.1. 

Local differences between maximal solutions at temperatures jw below T R ~ ~ .  

solutions bound all other solutions) is shown by the constant difference surfaces. The dark 
region has small difference. The notable feature, indicating what we mean by locality, is 
that the regions of appreciable difference do not touch each other and are separated by a sea 
where the solutions are almost identical. This suggests that when the difference between 
maximal solutions has N local regions, each can be independently switched to either of 
two configurations, and that there should be a total of 2 N  solutions. In fact, in the example 
corresponding to figure 3, we do find a total of eight solutions, and this method has been 
used to test the efficiency of different seed strategies. These solutions are found where the 
regions are local and do not influence each other. At such temperatures we must expect 
a constant density of such local differences between maximal solutions, and thus a total 
number of solutions that grows exponentially with the volume of the system. This picture 
fails at lower temperatures where the difference between maximal solutions is nowhere 
small and locality is lost. 

As was the case for the maximal solutions [3], in any particular solution correlation 
functions are rather rough with finite correlation length. 

4.3. Below the transition 

The reader will have noticed that our definition of mean-field theory as a sum over all states 
is at variance with our usual understanding of the ferromagnetic phase transition. One might 
uy to modify the definition at low temperature by only including solutions with one sign of 
the magnetization, however, the region in the vicinity of the transition will remain unclear. 
It is possible to visualize how the transition takes place from the lists of solutions along 
with their magnetizations and weights. In the top row of figure 4 the number of solutions 
is shown as  a histogram against their magnetization. The width of the distribution increases 
at lower temperature, but there are always solutions of small magnetization. In the lower 
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Figure 4. Number (tap line) and weight (bottom line) of solutions shown as a histogram agaimt 
magnetization for temperatures decreasing towards the right. 

line of plots in figure 4 the summed weights rather than the number of solutions are shown. 
It is clear that at low temperature the small magnetization solutions have low weight and 
are unimportant, and that the space of solutions is divided into two significant groups with 
opposite magnetization. 

5. Critical behaviour 

In order to study the critical behaviour of the theory we look at the susceptibilities and 
the quantities that arise from analysing the correlation functions. Besides investigating the 
divergence of the correlation length, we expect two independent exponents defined by the 
behaviour at the critical point. In three-dimensional real space the disconnected case goes 
as - rl-e whereas the connected case dies more quickly as - r-I-7. 

We always consider plane-plane correlators in one spatial direction with the transverse 
momenta set to zero: G(x, k,. = 0, k, = 0). From the solutions my, two different lattice 
correlation functions, C(') and C"), can be defined using sums over transverse planes. For 
example, in the x-direction 

For C('),  which is the plane-plane version of the disconnected correlator (2.7). we first 
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weight the plane sums before combining them, 

P&) = X W " P , " ( X )  
n 

Instead of performing the sums in the order given above, we can weight them after 
combining them, 

This procedure yields the plane-plane version C(" of the first term in the connected 
correlator (SiSj)c, (2.8). An average over the principal directions and over the random 
fields is made before obtaining the final results for ?' and p2). The plane-plane connected 
correlator is given by C(*) - C(') + C(FDT), in which the FDT term cannot be determined 
Jiectly from the solutions m; and a further iteration is required. 

5.1. Disconnected correlofor, (Si) (Sj) 

Scaling arguments suggest that away from the critical point the three-dimensional 
disconnected correlator~ behaves as G ( r )  = r'-i f (?-/e). The scaling function we shall 
use to fit C(') and define the correlation length arises from a Lorentzian squared propagator, 
a form that is motivated by zeroth-order pertubation theory. This choice is recommended 
by its simplicity and is frequently employed for fitting experimental data. The disadvantage 
of thii choice of scaling function f ( r / f )  = (f/r)l-qe-rLc, is that the critical limit, -+ CO, 

amounts to C ~= 1 behaviour. Although ij is in fact close to 1, we have explicitly checked 
that the other natural choice of scaling function f (r/c) =~e-r/c, gives similar results. 

The planeplane form of our fitting function is 

A 1 + - + B .  ( 3 (5.4) 

In c o n a t  to the lack of sensitivity to the precise form of scaling function, it is important 
to make the periodic modification correctly. Since the correlations fall off so slowly, only 
keeping the leading two terms in the periodic sum leads to significant errors. We use the 
complete form 

In all cases, even well away from the critical point, the fits are extremely good. Although 
we work exclusively above the critical temperature a constant term B has been included. 
This is done in order to take account of finite-size effects and is also necessary to avoid 
discontinuities between data sets from different number of seeds. In the infinite system 
we would expect B to be the mean site magnetization squared E2; however, we always 
observe it to be larger, approaching 2 at low temperature. We shall regard B becoming 
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Figure 5. Constant part of the disconnected conelator B .  the squared magnetization. Circles 
indicate results for maximal solutions alone, squarer; are for chequerboard solutions. 

different from zero as a signal that errors from finite-size effects or from missed solutions 
are important and shall only employ data for which B is compatible with zero. 

In figure 5 and 6 the constant B and the correlation length obtained from the fitting 
are plotted against temperature. The jackknife technique is used for the errors, but note 
that they are correlated since the same set of random fields is used at each temperature. 
The plots are displayed for the maximal and for the chequerboard solutions. These sets 
of data flow smoothly into each other as do the points based on the solutions arising from 
chequerboard followed by chequerboard plus random seeds. In fact these later points lie 
well within the errors of the chequerboard points and are not shown. It is generally the 
case that extra solutions beyond chequerboard do not change any of OUT analysis of the 
disconnected correlator. For each of the fitting parameters the quantity 2/3(2)' ,  remains 
close to 1 (its value for a Gaussian disuibution), except for the measurement of the constant 
term B at high temperatures where it becomes as large as 2. 

Consider figure 5 for the magnetization squared as measured by the constant term B 
of the correlator. Significant deviations between the points calculated with many solutions 
and those calculated with only maximal solutions become apparent below the temperature at 
which the maximal solution B becomes non-zero (T - 0.77). The value of B calculated with 
many solutions remains zero to a lower temperature (T - 0.74) before it too becomes non- 
zero, signalling either the onset of finite-size effects or a breakdown of the approximation. In 
this temperature interval where deviations are clear yet the theory is reliable, the correlation 
length calculated from many solutions continues to grow while that of the maximal solutions 
rounds off. Certainly the rounded form coming from the maximal solutions is not a finite- 
size effect as the curve for maximal solutions at 643 lies directly over this set. On the 
other hand the growing curve obtained from many solutions can become divergent as the 
size is increased since the number of solutions included will also increase. An exponent 
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for this potential divergence can be estimated by fitting t the curve < - (T - TC)-". To 
do this, a combination of points from different data sets that include as many solutions as 
available, is used. The two lowest temperature points where B is non-zero are ,dropped, 
while at the other end of the range the fit is found to 'be insensitive to the inclusion or not 
of high-temperature points. We find w to be 1.25 2cO.11 where the errors are statistical from 
jack-knife. The value of Tc found in this way is 0.64f0.01. As always with power-law fits 
over restricted ranges of data caution should be exercised in interpreting both the numerical 
values and errors. In particular, the effects of the crossover, to be discussed below, tend to 
make the the value of TC an underestimate. 

The fit to the correlator, specifically the coefficient A, allows an estimate of the exponent 
i j :  Scaling requires that the correlators G(x, k, = 0, kz = 0) behave as c3-"(x/c),  leading 
in the case of the fitting function (5.4), to A - c3-@. To avoid the uncertainty in TC we 
plot log(A/c3) against logo) in figure 7, thereby providing a more sensitive test of whether 
the data lie in the scaling region. The data lie on a curve with the effective value of i j  
decreasing at higher temperature. This behaviour is consistent with what we would expect 
from the crossover to pure criticality. As an estimate for i j  we use the liqe shown in the 
figure, obtained as the slope of the last points consistent with B = 0, to give i j  = 0.89 
with a statistical error of fO.lO. In view of the condition i j  0, it is reassuring that the 
tendency of the (omitted) lowest temperature points is in a direction that would increase h. 

An alternative method of evaluating ri would be directly through the susceptibility: 

After the average over disorder we find that the susceptibility is  given^ in terms of the 
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F- 7. ?he parameter Ale3,  fmm the disconnected conelator. Each point cormponds to 
Up data set with moSt solutions available at that temperature. The last point is not included in 
theti tzsBf0.  

magnetization fluctuations $” = ,8V? yielding a curve similar to the one obtained from 
the correlator fit This curve does not, however, allow a determination of the exponent 
because in the critical low temperature region, ? is contaminated with parts coming 
from non-zero magnetization causing the slope to actually turn positive for the points not 
consistent with B = 0. 

5.2. Connected correlator 

The an’alysis of the connected correlator requires more delicacy. There are two reasons for 
this; firstly the extra FDT tem and secondly a strong sample dependence on the random field. 
BY evaluating the quantity 7 / 3 ( 3 ) *  for the fitting parameters, one can see that in contrast 
to the disconnected case, the distributions are distinctly non-Gaussian. This observation is 
reinforced by an inspection of the susceptibilities for individual magnetic fields where one 
often observes points far removed from the mean. Although the number we will obtain for 
the exponent has so large an error as to be almost meaningless, it is nonetheless instructive 
to see how such a quantity can be evaluated in this framework. 

The full connected correlator is given by C@) - Cc’) + CcFDT).  The FDT part C(FDT’, 
defined in terms of g; = amp/ahj according to the plane-plane version of (2.8), cannot 
be determined directly from the magnetizations. In fact, a separate iteration is required to 
solve the equation for g;: 

(5.7) 
It would be prohibitive to perform this iteration for each site j of the lattice. However, for 
a small number of cases we have done the iteration for one site fixed and note a strong 

gij = ,8(1 - m:)(Dgij +&). 



Mean-freld theory for random field king model 3971 

dependence on the chosen 'site. We find that gij  is more singular in position space than 
the part C(') - Ccl) arising from the magnetization, and that asymptotically g;, always goes 
to zero. This is consistent with our theoretical prejudice that a fit of the FDT part alone 
should be done with the function arising from a propagator with a single pole in momentum 
space. At higher temperatures the FDT piece is dominant in the connected correlator, at 
lower temperatures it can plausibly be neglected. In that case, an analysis of C(*) - C(')  
alone leads to a correlation length, at the lowest few temperature points, that is withii the 
errors .of the same quantity, figure 6, calculated for the disconnected correlator. 

To determine the exponent q it is more wnvenient and accurate to abandon the full 
correlator and to work with the susceptibility. 

w'g,P. 
1 X(FD*) = 1 w"g; = - 

~ V i j  LL v i  EL 

The advantage of working with the susceptibility is that gy = cj gP;. can be evaluated by 
a single iteration of the equation obtained by summing (5.7): 

(5.9) 

The term x ( F D T )  is not very sensitive to the number of solutions employed to calculate 
it. In fact, in the temperature region of interest the FDT term is small compared with the 
difference term and is well approximated by the contribution from the maximal solutions 
alone. On the other hand, the magnetization difference term does show some dependence 
on the number of solutions;~the dependence is still small, but leads to different estimates 
for the exponent. Both terms, x") - x(I)  and x ( F D T ) ,  and their sum x") are shown in 
figure 8. The crossover to pure behaviour is very clear and using only the points below 
the crossover temperature we can attempt to determine the exponent q.  The analogue of 
tlie .method used in the,disconnected case, plotting x("/C2 against correl+ion length, fails 
because the cwe.turns and begins to rise at low temperahue in the same way as for xc1) 
based on 2. We therefore resort to a direct determination of the susceptibiiity ex'ponent 
y defined by x(c) - (T - Tc)-Y. Because of the small number of points and the large 
errors the points are not weighted according to the size of their errors in, this.fit. We 
obtain y = 1.66 f 0.53 with chequerboard data. For the increased number of solutions 
corresponding to chequerboard followed by two sets of random~pertubations we find that 
y is shifted to y = 1.97 i 0.91, where the increased size of the error is due the reduced 
number of random fields in this sample. ~ Using the scaling relation y =. v(2 - q) ,  we 
determine . .  the exponent q to be q = 0.7 f 0.5 and q =~0.4 f 0.8 for these respective data 
sets. 

gi = p(1 - n:) ( Q i  f 1) . 

. ,  

6. Conclusion 

By the direct procedure of solving the mean-field equations for the RFrm we have analysed 
the natural mean-field theory obtained by weighting the solutions with Boltzmann-lie 
factors. Our main conclusion is that this theory can describe critical behaviour at the 
ferromagnetic transition. The critical divergences arising from the sum over many solutions, 
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Figure 8. Connected susceptibility, (x") - x ( ' ) )  pm shown with squares (chequerboard data), 
FVT piece xtFDn shown wit? drdes for the maximal solutions only (the errors are small), the 
sum xCc) shown with open triangles. The curve shows the ben fit using only low-temperature 
points. 

each of which has regular behaviour. We have investigated both the number and properties 
of the solutions that contribute. 

We have studied the critical behaviour for temperatures above a bound determined by 
the condition that B ,  the constant part of the correlator, is consistent with zero. This 
should exclude errors arising from finite-size effects, especially when we note that the 
ratio f / L  is never larger than f j L  - 5/32. Effects of the crossover to pure behaviour 
were observed at higher temperatures, but we have still been able to estimate exponents 
U = 1.25 f 0.1 1, f l =  0.89 =k 0.10 where the errors are statistical. In view of the crossover 
and the fact that the condition on B prevents us coming closer to the critical point, these 
numbers should be treated with caution. Nevertheless, the estimates are not unreasonable. 
The most accurate determinations to date are from the work of  Rieger and Young who use 
Monte Carlo and finite-size scaling [14] to obtain v = 1.4 =k 0.2, f i  = 1.04 I. 0.08. 

The fact that ij is so close to 1 has led to suspicions of  a first-order transition [14, 151. 
However, we find it impossible to fit the specific heat, as measured by the derivative of 
the energy, to a divergence, and suspect a cusp form instead. There is thus the puzzle of 
zero latent heat already noted in [14]. In order to see how this effect, in particular, and 
the analysis, in general, depends on the choice of probability distribution for the random 
fields, we have been studying the Gaussian distribution. Preliminary results suggest that 
conclusions are unaffected. 

Only including those solutions that arise from chequerboard seeds gave good results 
for the disconnected correlator. Further accuracy would come from an increase in the 
number of random field samples rather than an increase in the number of solutions. In the 
connected case we observed stronger corrections coming from including solutions beyond 
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chequerboard, however, even there it was mainly the sample dependence that prevented 
greater accuracy. 
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